Engineering Topological Surface States: HgS, HgSe, and HgTe
نویسندگان
چکیده
منابع مشابه
Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe
Two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe ...
متن کاملTopological states in multi-orbital HgTe honeycomb lattices
Research on graphene has revealed remarkable phenomena arising in the honeycomb lattice. However, the quantum spin Hall effect predicted at the K point could not be observed in graphene and other honeycomb structures of light elements due to an insufficiently strong spin-orbit coupling. Here we show theoretically that 2D honeycomb lattices of HgTe can combine the effects of the honeycomb geomet...
متن کاملElectron-hole asymmetry of the topological surface states in strained HgTe.
Topological insulators are a new class of materials with an insulating bulk and topologically protected metallic surface states. Although it is widely assumed that these surface states display a Dirac-type dispersion that is symmetric above and below the Dirac point, this exact equivalence across the Fermi level has yet to be established experimentally. Here, we present a detailed transport stu...
متن کاملSurface States of Topological Insulators
We introduce a topological boundary condition to study the surface states of topological insulators within a long-wavelength four-band model. We find that the Dirac point energy, the band curvature, and the spin texture of surface states are crystal-face dependent. For an arbitrary termination of a bulk crystal, the energy of the symmetry protected Dirac point is determined by the bulk physics ...
متن کاملEngineering Topological Surface States and Giant Rashba Spin Splitting in BiTeI/Bi2Te3 Heterostructures
The search for strongly inversion asymmetric topological insulators is an active research field because these materials possess distinct properties compared with the inversion symmetric ones. In particular, it is desirable to realize a large Rashba spin-splitting (RSS) in such materials, which combined with the topological surface states (TSS) could lead to useful spintronics applications. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2013
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.111.146803